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The complex scalar fields may interact with electromagnetic fields since one can construct the
gauge invariant Lagrangian density. However, it is shown that the current of the scalar fields
becomes gauge dependent, and thus the fields should not be physical observables. Further, we study
the gauge invariant Lagrangian density for the scalar fields which couple to the non-abelian gauge
fields and show that the color singlet current of the scalar fields is also gauge dependent and thus
there is no chance that the scalar fields become observables.
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I. INTRODUCTION

II. COMPLEX SCALAR FIELDS

In field theory text books, it is most common that people start to discuss the scalar field theory, and they
construct the Lorentz invariant Lagrangian density of scalar field. Here, we first write the Lagrangian density
of scalar field with its mass m as

L =
1

2
(∂µφ)†(∂µφ)− 1

2
m2φ†φ (2.1)

where φ is defined as the sum of two real scalar fields φ1, φ2

φ = φ1 + iφ2. (2.2)

From the Lagrange equation, one can find the following Klein-Gordon equations

∂µ∂
µφi −m2φi = 0, (i = 1, 2). (2.3)

This is a free particle state, and thus there is no way to observe it. Therefore, we should find out interactions
with electromagnetic fields. The way to construct the gauge invariant Lagrangian density is well known, and
we will discuss it below.

III. SCALAR FIELD WITH GAUGE FIELD

The Lagrangian density of scalar fields interacting with gauge fields can be given as

L =
1

2
(Dµφ)†(Dµφ)− 1

4
FµνF

µν (3.1)

where

Dµ = ∂µ + ieAµ, Fµν = ∂µAν − ∂νAµ. (3.2)

Here φ denotes a complex scalar field and Aµ is a vector potential. e denotes the gauge field coupling constant
which shows the strength of the interaction.
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A. Gauge Invariance

Here we should examine the gauge invariance of the Lagrangian eq.(3.1). The gauge transformation is defined
here as

A′µ = Aµ + ∂µχ

φ′ = e−iχφ. (3.3)

Now we insert this transformation into Dµφ and we see

D′µφ
′ = [∂µ + ie(Aµ + ∂µχ)]e−ieχφ = Dµφ (3.4)

which is invariant under the gauge transformation.

B. Noether Current

From the Lagrangian density of eq.(3.1), one can obtain the Noether current Jµ

Jµ =
1

2
i
{
φ†(∂µ + igAµ)φ− φ(∂µ − igAµ)φ†

}
(3.5)

and the gauge invariance of this current density Jµ is guaranteed. Also, one can check that the current density
Jµ is conserved, that is

∂µJ
µ = 0. (3.6)

Therefore the current density Jµ is gauge invariant and it is conserved.

C. Current Density jµs of Scalar Field

However, the current density jµs of the scalar field is different from Jµ and is written as

jµs =
1

2
i
{
φ†∂µφ− φ∂µφ†

}
. (3.7)

Now a question may arise as to whether this jµs should be invariant under the gauge transformation of eq.(3.3)
or not. Indeed one sees that this current density jµs of scalar field is not gauge invariant since

j′
µ
s = jµs + eφ†∂µχφ. (3.8)

It is now important to realize that the current density of scalar field should not be observed. This means that
the charge of the scalar field should not be observables.

IV. SCALAR FIELD WITH NON-ABELIAN GAUGE FIELD

Now we should extend the formulation of the scalar field coupling to the U(1) gauge field to the non-abelian
gauge field. In this case, the Lagrangian density of scalar fields interacting with non-abelian gauge fields can
be given as

L =
1

2
(Dµφ)†(Dµφ)− 1

4
GaµνG

aµν (4.1)

where

Dµ = ∂µ + igAµ · τ , Gµν = ∂µAν − ∂νAµ + ig[Aµ,Aν ]. (4.2)
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Here, the SU(2) generator t = 1
2τ should satisfy the following relation

[ta, tb] = iCabctc (4.3)

where Cabc denotes the structure constant, and τ is the Pauli matrix. φ denotes the two component spinor
which should be written as

φ =

(
φ1

φ2

)
(4.4)

In this case, the Lagrangian density eq.(4.1) is invariant under the gauge transformation of

A′
µ = Aµ + ∂µχ (4.5)

φ′ = e−igχ·τφ. (4.6)

Here, we make use of the following identity

e−igχ·τ = cos gχ− i

χ
(χ · τ ) sin gχ (4.7)

eigχ·τ e−igχ·τ =

(
cos gχ+

i

χ
(χ · τ ) sin gχ

)(
cos gχ− i

χ
(χ · τ ) sin gχ

)
= 1. (4.8)

Now the color singlet scalar current jµ

jµ =
1

2
i
{

(φ)†∂µφ− φ∂µφ†
}

(4.9)

becomes gauge dependent since

j′
µ

= jµ + gφ†∂µ(χ · τ )φ. (4.10)

Therefore, it should be important to realize that the scalar current is gauge dependent and thus it is not a
physical observable even though it is a color singlet current. It should be noted that the color current such as
quark or gluon currents are gauge dependent, and thus they are not physical observables and this is just the
confinement of quarks or gluons in QCD.

V. EIGENSTATE OF CHARGE

Here, a question may arise as to what is the charge of the scalar field. In order to clarify the concept of
charge, we should define the charge operator as

Q̂|q〉 = q|q〉 (5.1)

where q takes q = ±1. The charge zero state cannot interact with the gauge field and thus we should exclude
the charge zero state in this scheme.

In addition, the charged state should not necessarily interact with the electromagnetic field. There is a good
example which is weak bosons of W±. The charge of W± should be

Q̂|W±〉 = ±|W±〉. (5.2)

However these bosons cannot interact with the electromagnetic field since the weak currents of W± bosons
cannot couple with the electromagnetic field. Instead, they interact with electrons and neutrinos.

A. Charge Quantum Number

In this respect, the charge should be considered as the quantum number of particles. Therefore, it should
be a conserved quantity. At the present stage, this conservation should be valid rigorously, and if there is any
violation of this charge quantum number, then there must be a proper reason of the violation.
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B. Charge State of Complex Scalar Field

If we define the complex scalar field by

φ = φ1 + iφ2 (5.3)

then this must be an eigenstate of the charge operator, and thus

Q̂|φ+〉 = +|φ+〉. (5.4)

Therefore φ1 and φ2 must satisfy

Q̂|φ+1 〉 = +|φ+1 〉, Q̂|φ+2 〉 = +|φ+2 〉. (5.5)

In this case, we do not understand the meaning of the label 1 and 2 in the φ1 and φ2 states.

VI. CHARGE TRANSFER IN HIGGS MECHANISM

In the Higgs mechanism, the charge of the scalar boson should be transferred to the electromagnetic field.
This is quite mysterious and we should clarify as to what should have happened to the charge transfer in the
Higgs mechanism.

A. Higgs Mechanism

Before discussing the transfer of the charge, we briefly review the Higgs mechanism. The Lagrangian density
is given as

L =
1

2
(Dµφ)†(Dµφ)− 1

4
u0

(
|φ|2 − λ2

)2 − 1

4
FµνF

µν (6.1)

where u0 and λ are constant. The second part of the Lagrangian density denotes the Higgs potential which is
introduced by hand. Now the equations of motion for the scalar field φ become

∂µ(∂µ + igAµ)φ = −u0φ
(
|φ|2 − λ2

)
− igAµ(∂µ + igAµ)φ (6.2)

∂µ(∂µ − igAµ)φ† = −u0φ†
(
|φ|2 − λ2

)
+ igAµ(∂µ − igAµ)φ†. (6.3)

On the other hand, the equation of motion for the gauge field Aµ can be written as

∂µF
µν = gJν (6.4)

where

Jµ =
1

2
i
{
φ†(∂µ + igAµ)φ− φ(∂µ − igAµ)φ†

}
. (6.5)

One can also check that the current Jµ is conserved, that is

∂µJ
µ = 0. (6.6)
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B. Unitary Gauge Fixing

In the Higgs mechanism, the central role is played by the gauge fixing of the unitary gauge. In the unitary
gauge one takes

φ = φ† (6.7)

which means that φ2 = 0 from eq.(5.3). This is quite a strange result from the definition of the complex scalar
field since this gauge fixing has nothing to do with the gauge field of Aµ. In any case, this is the constraint on
the scalar field φ even though there is no gauge freedom in this respect. For the scalar field, the phase can be
changed, but this does not mean that one can erase one degree of freedom. One should transform the scalar
field in the gauge transformation as

φ′ = e−igχφ (6.8)

but one must keep the number of degree of freedom after the gauge transformation. Whatever one fixes the
gauge χ, one cannot change the shape of the scalar field φ since it is a functional variable and must be determined
from the equations of motion. The gauge freedom is, of course, found in the vector potential Aµ as we discussed
above. In this sense, one sees that the unitary gauge fixing is a simple mistake. The basic reason why people
overlooked this simple-minded mistake must be due to their obscure presentation of the Higgs mechanism. Also,
it should be related to the fact that, at the time of presenting the Higgs mechanism, the spontaneous symmetry
breaking physics was not understood properly since the vacuum of the corresponding field theory was far beyond
the proper understanding. Indeed, the Goldstone boson after the spontaneous symmetry breaking was taken
to be almost a mysterious object since there was no experiment which suggests any existence of the Goldstone
boson. Instead, a wrong theory prevailed among physicists. Therefore, they could assume a very unphysical
procedure of the Higgs mechanism and people pretended that they could understand it all.

C. Final Lagrangian Density

After an improper gauge fixing, one arrives at the final Lagrangian density

L =
1

2
(∂µη)(∂µη)− 1

4
u0

(
|λ+ η(x)|2 − λ2

)2
+

1

2
g2(λ+ η(x))2AµA

µ − 1

4
FµνF

µν (6.9)

where we rewrite the Higgs field as

φ = φ† = λ+ η(x). (6.10)

Since the real scalar field η is supposed to be small and besides a real scalar field is unphysical, it may be set
to zero, that is, η = 0. In this case, we arrive at the following Lagrangian density

L =
1

2
g2λ2AµA

µ − 1

4
FµνF

µν . (6.11)

This should be the final Lagrangian density of the Higgs theory, and it is nothing but the massive vector boson
field which has nothing to do with the gauge theory.

D. Transfer of Charge

The original scalar field φ is a complex field, and it is written as

φ = φ1 + iφ2 (6.12)
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VII. CONCLUSIONS

In this short note, we have presented the intrinsic problem of minimal transformation for the complex scalar
fields. The fact that the minimal transformation should not be taken as a principle may well be well-known to
educated physicists. In this respect, this short note is only to confirm that the minimal transformation must
be taken as a result of the gauge transformation.
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